
IJAICT Volume 6, Issue 11, November 2019
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2017.03.04 Published on 05 (11) 2019

Corresponding Author: Mrs. N. Rama Kalpana, Adithya Institute of Technology, Coimbatore, Tamilnadu, India. 1186

REVOLUTION DATA ANALYTICS IN HADOOP
Ms. N. Rama Kalpana
Assistant Professor,

Department of Computer Science and Engineering,
Adithya Institute of Technology,
Coimbatore, TamilNadu, India

Abstract – Big Data refers to datasets whose size are beyond the
ability of typical database software tools to capture, store, manage
and analyse.It is a new generation of technologies and architectures
designed to extract value economically from very large volumes of
awide variety of data by enabling high velocity capture, discovery
and analysis. Big data is data that exceeds the processing capacity of
conventional database systems[1]. The data istoo big, moves too fast,
or does not fit the structures of existing database architectures. To
gain value from these data, there must be an alternative way to
process it.Bigdata analysis is used for analysis the huge number of
data involved in traditional data processing. It includes analysis,
capture, data curation, search, sharing, storage, transfer,
visualization, querying and information privacy. Relational database
management systems and desktop statistics and visualization
packages have difficulty handling big data.

Keywords – Big Data, Relational Database, Information Privacy,
Revolution Analytics.

I. INTRODUCTION

Big Analytics delivers competitive advantage in two ways
compared to the traditional analytical model. Big Analytics
describes the efficient use of a simple model applied to
volumes of data that would be too large for the traditional
analytical environment. Research suggests that a simple
algorithm with a large volume of data is more accurate than a
sophisticated algorithm with little data.

The objectives for working with Big Data Analytics:
1. Avoid sampling / aggregation
2. Reduce data movement and replication
3. Bring the analytics as close as possible to the data
4. Optimize computation speed

Revolution Analytics delivers optimized statistical algorithms
for the three primary data management paradigms being
employed to address growing size and increasing variety of
organizations’ data, including file-based, MapReduce (e.g.
Hadoop) or In-Database Analytics. Open Source R was not built
for Big Data Analytics because it is memory-bound. Depending
on the type of statistical analysis required, Big Data also causes
issues that is called “Big Computations,” as some algorithms
require a great deal of processing capacity on their own and may

not lend themselves to running in every data management
paradigm. Big Computations, parallelism (as we’ve deployed
with IBM Netezza and ScaleR) is important to performance and
to the accuracy of the statistical analysis. Coupled with an
intuitive R Development Environment from Revolution
Analytics, the degree of innovation exceeds that which may be
achieved through packaged analytic applications.

II. CHARACTERISTICS OF BIG DATA

2.1 High Volume
Big Data is not just about the size of data but also includes data
variety and data velocity. Volume is synonymous with the “big”
in the term, “Big Data”.

Volume is a relative term – some smaller-sized organisations
are likely to have mere gigabytes or terabytes of data storage as
opposed to the petabytes or exabytes of data that big global
enterprises have. Data volume will continue to grow, regardless
of the organisation’s size. There is a natural tendency for
companies to store data of all sorts: financial data, medical data,
environmental data and so on. Many of these companies’
datasets are within the terabytes range today but, soon they
could reach petabytes or even exabytes.

© 2019 IJAICT (www.ijaict.com)

Corresponding Author: Mrs. N. Rama Kalpana, Adithya Institute of Technology, Coimbatore, Tamilnadu, India. 1187

2.2 High Variety
Data can come from a variety of sources (typically both
internal and external to an organisation) and in a variety of
types. With the explosion of sensors, smart devices as well as
social networking, data in an enterprise has become complex
because it includes not only structured traditional relational
data, but also semi-structured and unstructured data.

Structured data: This type describes data which is grouped
into a relational scheme (e.g., rows and columns within a
standard database). The data configuratio and consistency
allows it to respond to simple queries to arrive at usable
information, based on an organisation’s parameters and
operational needs.

Semi-structured data: This is a form of structured data that
does not conform to an explicit and fixed schema. The data is
inherently self-describing and contains tags or other markers to
enforce hierarchies of records and fields within the data.
Examples include weblogs and social media feeds.

Unstructured data: This type of data consists of formats which
cannot easily be indexed into relational tables for analysis or
querying. Examples include images, audio and video files.

2.3 High Velocity
Velocity of data in terms of the frequency of its generation and
delivery is also a characteristic of big data. Conventional
understanding of velocity typically considers how quickly the
data arrives and is stored, and how quickly it can be retrieved.
In the context of Big Data, velocity should also be applied to
data in motion: the speed at which the data is flowing. The
various information streams and the increase in sensor network
deployment have led to a constant flow of data at a pace that
has made it impossible for traditional systems to handle.

Informed intuition: predicting likely future occurrences and
what course of actions is more likely to be successful.
Intelligence: looking at what is happening now in real time (or
close to real time) and determining the action to take.

Insight: reviewing what has happened and determining the
action to take.

III. REVOLUTION ANALYTICS AND HADOOP

Many enterprise companies are used to slove the big data
analytics in “R” statistical programming language and Hadoop
(both open source projects) as a potential solution for their
organisations. Large amount of data especially unstructured data
collected by organizations and enterprises explodes, Hadoop is
emerging rapidly as one of the primary options for storing and
performing operations on that data[2]. The marriage of R and
Hadoop seems a natural one. Both are open source projects and
both are data driven. But there are some fundamental challenges
that need to be addressed in order to make the marriage work.
Revolution Analytics is addressing these challenges with its
Hadoop-based development.

3.1 Iterative vs. batch processing
In Iterative Process, explore and try to understand the data, try
some different statistical techniques, drill down on various
dimensions, etc. R is a powerful tool, and an ideal environment
for performing such analysis. Hadoop on the other hand, is
batch oriented where jobs are queued and then executed, and it
may take minutes or hours to run these jobs.

3.2 In-memory vs. in parallel
R is designed to have all of its data in memory and programs in
Hadoop (map/reduce) work independently and in parallel on
individual data slices.

IV. REVOLUTION ANALYTICS CAPABILITIES

FOR HADOOP

Revolution has created a series of “Revo Connect Rs for
Hadoop” that will allow an R programmer to manipulate
Hadoop data stores directly from HDFS and HBASE, and give
R programmers the ability to write MapReduce jobs in R using
Hadoop Streaming. RevoHDFS provides connectivity from tR
to HDFS and RevoHBase provides connectivity from R to
HBase. RevoHStream allows MapReduce jobs to be developed
in R and executed as Hadoop Streaming jobs.

V. PHASES IN THE PROCESSING PIPELINE

5.1 Data Acquisition and Recording
It it is recorded from some data generating source

5.2 Information Extraction and Cleaning
 Information collected will not be in a format ready for

analysis.

5.3 Data Integration, Aggregation, and Representation

IJAICT Volume 6, Issue 11, November 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2017.03.04 Published on 05 (11) 2019

Corresponding Author: Mrs. N. Rama Kalpana, Adithya Institute of Technology, Coimbatore, Tamilnadu, India. 1188

Heterogeneity of the flood of data, it is not enough merely to
record it and throw it into a repository[3].

5.4 Query Processing, Data Modeling, and Analysis
Methods for querying and mining Big Data are fundamentally
different from traditional statistical analysis on small samples
.
5.5 Interpretation

The ability to analyze Big Data is of limited value if
users cannot understand the analysis.

VI. HADOOP DISTRIBUTED FILE SYSTEM

A basic storage mechanism in Hadoop is HDFS (Hadoop
Distributed File System). For an R programmer, being able to
read/write files in HDFS from a standalone R Session is the first
step in working within the Hadoop ecosystem. The memory
constraints of R, this capability allows the analyst to easily work
with a data subset and begin some ad hoc analysis without
involving outside parties .It also enables the R programmer to
store models or other R objects that can then later be recalled
and used in MapReduce jobs. When MapReduce jobs finish
executing, they normally write their results to HDFS. Inspection
of those results and usage for further analysis in R make this
functionality essential.

6.1 HBASE Overview
HBASE is the top layer in the HDFS. In HBASE, Hadoop’s
answer to providing database likes table structures. Just like
being able to work with HDFS from inside R, access to HBASE
helps open up the Hadoop framework to the R programmer. It is
not be able to load a billion-row- by-million-column table,
working with smaller subsets to perform ad hoc analysis can
help lead to solutions that work with the entire data set.

6.2 MapReduce – Data Reduction
The processing pillar in the Hadoop ecosystem is the
MapReduce framework. The framework allows the specification
of an operation to be applied to a huge data set, divide the
problem and data, and run it in parallel. A very large dataset
can be reduced into a smaller subset where analytics can be
applied[2]. In a traditional data warehousing scenario, this might
entail applying an ETL operation on the data to produce
something usable by the analyst. In Hadoop, these kinds of
operations are written as MapReduce jobs in Java. There are a
number of higher level languages like Hive and Pig that make
writing these programs easier. The outputs of these jobs can be
written back to either HDFS/HBASE or placed in a traditional
data warehouse. R can then be used to do the analysis on the
data.

6.3 MapReduce – R
Executing R code in the context of a MapReduce job elevates
the kinds and size of analytics that can be applied to huge
datasets. It involves pushing the model to the Task nodes in the
Hadoop cluster, running a MapReduce job that loads the model
into R on a task node, scoring data either row-by row (or in
aggregates), and writing the results back to HDFS. In the most
simplistic case this can be done with just a Map task.
Visualizations of huge datasets can provide important insights
that help understand the data. Creating a binning algorithm in R
that is executed as a MapReduce job can produce an output that
can be fed back into an R client to render such visualizations. It
include data Mining algorithms like K-Means clustering,
logistic regression with small numbers of parameters and
iterations, and even linear regression.

IJAICT Volume 6, Issue 11, November 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2017.03.04 Published on 05 (11) 2019

Corresponding Author: Mrs. N. Rama Kalpana, Adithya Institute of Technology, Coimbatore, Tamilnadu, India. 1189

6.4 MapReduce – Hybrid
A hybrid model that combines using something like HIVE QL,
and R. HIVE QL allows us to perform some SQL like
capabilities to create naturally occurring groups where R
models can be created. Revolution has created an R package
that allows creation of MapReduce jobs in R. The goal is
providing a simple and usable interface that allows
specification of both Map and Reduce as functions in R. It
keeps the data scientist working in R. R programmer might
have to rethink the approach to how algorithms can be realized
and implemented. Revolution Analytics is the leading
commercial provider of software and services based on the
open source R project for statistical computing.

VII. BINNING ALGORITHM

Data binning or bucketing is a data pre-processing technique
used to reduce the effects of minor observation errors.
Statistical data binning is a way to group a number of more or
less continuous values into a smaller number of "bins". Binning
or discretization is the process of transforming numerical
variables into categorical counterparts.

Two types of binning algorithms:
1. Unsupervised Binning
2. Supervised Binning.

Parameters : x, y : array
The x and y data values.
yerr : array, optional
Errors on the data values.

x0 : float, optional
 Starting time of first bin. Default is lowest given x value.
dt : float, optional
 Width of a bin (either dt, nbins or reduceBy must be given).
nbins : int, optional
Number of bins to use (either dt, nbins or reduceBy must be
given). Note that this specifies the number of bins into which
the range from x0 to the last data point is subdivided.

reduceBy : int, optional

 Reduce the number of elements in the array by the given factor
(either dt, nbins or reduceBy must be given). Note that in this
case, x0 is set to the first (minimum x-value) and the number of
bins, n, is calculated according to the prescription: n =
int(round(len(x)/reduceBy))

removeEmpty : boolean, optional

If True (default), bins with no data points will be removed from
the result.

removeNoError : boolean, optional

If True, bins for which no error can be determined will be
removed from the result. Default is False.
useBinCenter : boolean, optional

If True (default), the time axis will refer to the center of the
bins. Otherwise the numbers refer to the start of the bins.

useMeanX : boolean, optional
If True, the binned x-values refer to the mean x-value of all
points in that bin. Therefore, the new time axis does not have to
be equidistant.

nanHandling : None, “ignore”, float, (optional)
Controls how NaNs in the data are handled.
None: By default (None), nothing is done and NaNs are treated
as if they were valid input data, so that they are carried over
into the binned data. This means that output bins containing
NaN(s) will also end up as NaN(s). If ‘ignore’

‘ignore’: In this case, NaNs contained in the input data are
removed from the data prior binning. Note however, that x0,
unless specified explicitly, will still refer to the first data point,
whether or not this holds a NaN value.
float: If a float is given, input data values containing NaNs are
replaced by the given float before binning. Note that no error
on the data (yerr) can be considered in this case, to avoid
erronous treatment of un- or misspecified error values.

Returns :
Binned data set : array
 An array with four columns: 1) The new x-axis, 2) The binned
data (the mean value of the data points located in the individual
bins), 3) Error of binned data, 4) The number of input data
points used to create the bin. For instance, the new x-values can
be accessed using result[::,0].

dt : float
The width of the bins.

IJAICT Volume 6, Issue 11, November 2019

© 2019 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2017.03.04 Published on 05 (11) 2019

© 2019 IJAICT (www.ijaict.com)

Corresponding Author: Mrs. N. Rama Kalpana, Adithya Institute of Technology, Coimbatore, Tamilnadu, India. 1190

VIII. K MEANS CLUSTERING ALGORITHM

It is one of the simplest unsupervised learning algorithms that
solve the well known clustering problem. The procedure
follows a simple and easy way to classify a given data set
through a certain number of clusters (assume k clusters) fixed a
priori. The main idea is to define k centroids, one for each
cluster. These centroids shoud be placed in a cunning way
because of different location causes different result. So, the
better choice is to place them as much as possible far away
from each other. The next step is to take each point belonging
to a given data set and associate it to the nearest centroid. When
no point is pending, the first step is completed and an early
groupage is done. At this point we need to re-calculate k new
centroids as barycenters of the clusters resulting from the
previous step. After we have these k new centroids, a new
binding has to be done between the same data set points and the
nearest new centroid. A loop has been generated. As a result of
this loop we may notice that the k centroids change their
location step by step until no more changes are done.

The objective function
where,
 ‘||xi - vj||’ is the Euclidean distance between xi and vj.

‘ci’ is the number of data points in ith cluster.
 ‘c’ is the number of cluster centers.

Algorithmic steps for k-means clustering
Let X = {x1,x2,x3,……..,xn} be the set of data points and V =
{v1,v2,…….,vc} be the set of centers.
1) Randomly select ‘c’ cluster centers.
2) Calculate the distance between each data point and cluster
centers.
3) Assign the data point to the cluster center whose distance
from the cluster center is minimum of all the cluster centers..
4) Recalculate the new cluster center using:

where, ‘ci’ represents the number of data points in ith cluster.
5) Recalculate the distance between each data point and new
obtained cluster centers.

6) If no data point was reassigned then stop, otherwise repeat
from step 3).
Advantages
1) Fast, robust and easier to understand.
2) Relatively efficient: O(tknd), where n is # objects, k is #
clusters, d is # dimension of each object, and t is # iterations.
Normally, k, t, d << n.
3) Gives best result when data set are distinct or well separated
from each other.

IX. CONCLUSION

Better analysis of the large volumes of data that are becoming
available, there is the potential for making faster advances in
many scientific disciplines and improving the profitability and
success of many enterprises.The challenges include not just the
obvious issues of scale, but also heterogeneity, lack of
structure, error-handling, privacy, timeliness, provenance, and
visualization, at all stages of the analysis pipeline from data
acquisition to result interpretation. These technical challenges
are common across a large variety of application domains, and
therefore not cost-effective to address in the context of one
domain alone.

References

[1] Edd Dumbill. What is big data? [Online] Available from:
http://radar.oreilly.com/2012/01/what-is-big-data.htm l[Accessed 9th July
2012].

[2] http://www.revolutionanalytics.com/big-analytics.
[3] Materials Genome Initiative for Global Competitiveness. National

Science and Technology Council. June 2011.
[4] The k-means algorithm - Notes by Tan, Steinbach, Kumar Ghosh.
[5] http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html

IJAICT Volume 6, Issue 11, November 2019
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2017.03.04 Published on 05 (11) 2019

http://www.ijaict.com)
http://radar.oreilly.com/2012/01/what-is-big-data.htm
http://www.revolutionanalytics.com/big-analytics.
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html

